
Vreelin Eng. Inc.

11/23/2010 Product Specification

www.vreelin.com 1

USB2 High-Speed Device Interface for
Xilinx EDK

5.0

Vreelin Eng. Inc.
747 Alice Ave.
Mountain View, CA
USA, 94041
Phone: (650) 386-5758
Fax: (650) 386-5758
E-mail:sales@vreelin.com
Website: www.vreelin.com

Features
• Logo Certified as a USB 2.0 High-Speed Device
• Also supports Full Speed
• 12 pin ULPI I/F to external USB2 PHY
• 32 Bit LMB Slave Interface
• 7 user endpoints plus control endpoint 0

- user endpoints can be bulk, interrupt, or ISO
- firmware configures each endpoint

• Memory mapped interface to the USB FIFO’s
- 8, 16 and 32 bit addressable

• Uses Block RAM (BRAM) for endpoint FIFO’s
- each FIFIO is double buffered
- Verilog source for FIFO memory provided for user optimization

• Complete logo certified mass storge device class firmware
• Windows device driver
• Demo applications

Table 1: Example Implementation Statistics

Family Example Device Fmax
(MHz)

Slices1 IOB2 GCLK BRAM MULT DCM/
DLL

MGT PPC Design
Tools

Spartan-6™ XC6Sxxx-x 150 850 1 + N/A N/A ISE/EDK 12.3
Virtex 6™ XC6Vxx-x 150 750 1+ N/A N/A ISE/EDK 12.3
Virtex-5™ XC5Vxxx-x 150 750 1+ N/A N/A ISE/EDK 12.3

 Core Facts
Provided with Core

Documentation User Manual
Design File Formats EDIF netlist, Verilog Wrapper
Constraints Files None needed
Verification Test Bench with HDL Source license

only
Instantiation templates Verilog
Reference designs &
application notes

Reference Design on ML50X/ML40X
series development boards with

SMSC 3300 USB2 PHY Daughter
Card

Runs on Spartan 6/Virtex6 boards
with custom PHY daughter card

Firmware Complete Firmware stack provided

Core and Firmware is USB Logo Certified as a High-Speed
USB device by the USB Implementorʼs Forum

Support provided by Vreelin Eng. Inc.

USB2.0 High-Speed Device Interface for Xilinx EDK

2 11/23/2010

Figure 1: USB 2.0 Core Block Diagram

Applications
Adds a High-Speed USB 2.0 compliant device interface to the user’s design. This interface is suitable for
USB centric, high performance designs as well as legacy port replacement applications.

General Description
The Vreelin USB 2 High Speed Device core and associated software implement a complete end to end
solution for connecting a Microblaze EDK design to a Windows host using high speed USB 2
transactions. Complete firmware for the Microblaze side is provided in standard C and a stable, high
performance Windows device driver is provided for the PC. A demo application running under the Xilinx
Microkernel (XMK) or standalone and an assocaiated application running on Windows not only
demonstrate the operatoin of the core, device driver, and firmware, but provide an excallant starting point
for a user’s design. The provided firmware also provides a mass storage device class demo that is a
great starting point for mass storage applications.

Overall performance of the Vreelin devie core is limited only by the speed of the Microblaze LMB bus and
Windows. The core will run at maximum USB 2.0 high speed data rates. To achieve maximum
performance, the core needs ~15 million 32 transactions per second over LMB. A Microbalze system
running at 100MHZ or greater will provide this level of performance. The LMB bus was chosen for this
core due to the poor performance of LMB and PLB. This choice was guided by the designer of the
Microblaze processor and other designer’s experience with the EDK.

The core is implemented in approximately 750 slices on Virtex 5 and Virtex 6 and utilizes 1 or more block
RAM’s (BRAM’s) configured as a dual port RAM with asyncronous clocked ports. Verilog source code is
provided for the dual port RAM so that a designer can make appropriate tradeoffs in the dual port RAM’s
implementation. As supplied, the dual port RAM is implemented as 2K by 32 bit using 4 BRAM’s. A 32 bit,
byte addressable slave interface is implemented over LMB. The LMB interface supports one clock per
write, 2 clocks per read on a random basis and 1 one clock per write, 2 clocks for the first read, and one
for sequential reads on a block access basis.

On the USB side, the core uses the latest ULPI USB 2 PHY interface which requires only 12 pins. The
core implements completely asynchronous dual clock domains. The USB SIE side of the core runs off of
the ULPI PHY 60MHZ clock and the LMB bus interface side runs off the LMB clock.

Note that for an understanding of USB 2.0 and all of its ramifications there are several sources. The USB
2.0 specifications available at www.usb.org is the standard definition, Mindshare and others have various
books on the protocol, and Cypress Semiconductor has one of the best introductions in it’s “Easy USB FX
User Manual” which can be downloaded at www.cypress.com. Read Chapter 1. Also please note that in
this document and others, I refer to Windows. Microsoft for good or bad, defines the host O/S operating
requirements that USB devices must meet. Linux and other O/S’s are compatiable.

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 3

Functional Description
USB 2.0 Protocol
A detailed description of the USB 2.0 protocol is beyound the scope of this data sheet. For that kind of
description please refer to the USB 2.0 specification available from http://www.usb.org or to one of the
many books that are available.

For purposes of this data sheet, the USB 2.0 protocol multiplexes many devices over a single, half
duplex, bit serial bus. The bus is designed to be plug and play. The bus runs at 480 mega bits per
second. The PC always controls the bus and send tokens to each device specifing the required action.
Each device has an address on the USB 2.0 bus and has one or more endpoints that are sources or
sinks of data. All devices have endpoint 0, the system control endpoint. Unlike all other endpoints,
endpoint 0 is full duplex and single buffered. The Vreelin device core has seven additional endpoints for
the user’s application. When the PC wants to send data to a device’s endpoint, it sends an OUT token,
along with the address of the device and the endpoint number followed by the data. To receive data, the
PC sends an IN token with the device address and endpoint number and waits for data from the device.
To perform system level control functions, including plug and play, SETUP tokens are sent by the PC to
endpoint 0, along with setup information.

The USB 2.0 core consists of 6 major hardware components and 4 software components.

USB 2.0 PHY

The PHY is user supplied. It can be any of the ULPI complaint PHYʼs on the market. The PHYʼs primary
job is to handle the bit level serialization and de-serialization of USB 2.0 traffic. To do this it must also
detect and recover the USB bus clock. This clock runs at 480MHZ and is too fast for practical
implementation as programmable logic in the FPGA as well as in many ASICʼs. Since 480MHZ is also
high for a core clock, the PHY interfaces to the USB 2.0 core on a byte serial basis and generates a
60MHZ clock. This clock runs the SIE side of the USB 2.0 core. It can also be used to run the entire
FPGA if desired.

Vreelin has had great success as well as achieved USB Logo Certification using the SMSC USB3300
ULPI PHY and several of SMSC’s later variants.

USB 2.0 SIE
The USB 2.0 SIE (SIE) handles the serialization and de-serialization of USB traffic at the packet level
and the multiplexing and demultiplexing of USB data to and from the core’s endpoints. The SIE also
handles USB 2.0 state transitions such as suspend, resume, and USB reset. The SIE implements the
protocol specified in Chapter 8 of the USB 2.0 specification.

The SIE interfaces to the PHY using an industry standard set of handshaking lines called the ULPI
interface. ULPI requires only 12 pins and is ideal for FPGA designs. Data to the FPGA from the USB is
received from the PHY, error checked, and loaded into the appropriate area of the dual port RAM. Data
from the FPGA to be sent over the USB is loaded from the block RAM, protocol wrapped and presented
to the PHY a byte at a time when the protocol allows.

The status of current USB transactions are signaled by the SIE to the status register. Certain conditions
can be enabled through the interrupt enable register to generate an interrupt on the LMB bus.

Dual Port RAM

USB2.0 High-Speed Device Interface for Xilinx EDK

4 11/23/2010

The Dual Port RAM is the data storage area between the USB SIE and the LMB bus interface. It is fully
dual port and dual clocked. Port A is used by the SIE, port B is used by the LMB bus interface. For
performance reasons, both ports are 32 bits wide. Port A is clocked by the ULPI PHY clock at 60MHZ and
port B is clocked by the LMB bus clock at any speed desired. There is no required phase relationship
between the clocks.

Data from USB is stored in the appropriate locations in Dual Port RAM by the SIE through port A. The
user’s firmware or hardware accesses this data through port B over the LMB. Data to the USB is loaded
by the user through the LMB to port B into the appropriate locations in the Dual Port RAM. When the PC
requests data from the device, the SIE accesses this data from port A.

The Dual Port RAM is “seen” by the SIE as eight endpoint FIFO’s, plus a control register area that defines
how the memory is laid out. Each FIFO is implemented as ping pong buffers to help support the high
throughput possible with USB 2.0. One buffer can be used for a current USB transaction while the other
buffer is available to the user application for processing. The storage areas are treated as FIFO’s only
from the SIE’s point of view. The user’s firmware or hardware can access the storage as ordinary RAM
over LMB. Dual Port RAM based registers are located in the lower 64 bytes of Dual Port RAM that
control the layout of each endpoint’s FIFO’s in Dual Port RAM, the communications direction (OUT or IN)
of the endpoint, the endpoint’s type (Bulk/Interrupt or ISO), and certain internal state information.

To provide flexability to the designer and to minimize the resources used by the USB 2.0 Core, the
Verilog source code for the dual port RAM implementation is provided. The disigner can then optimize for
his particular needs. As supplied, 4 2kx8 BRAM’s are used. More or less can be used as long as port A is
32 bit addressable and port B is 8, 16, and 32 bit addressable.

LMB Bus Interface

The LMB bus interface connects port B of the dual port RAM and the Control & Status Registers to the
LMB bus. This is a slave interface that looks like RAM. Byte, half word and word transfers are supported.

Control & Status Registers

The Control and Status Registers control operation of the USB 2.0 core, report the core’s status, sets the
USB function address, indicates buffer ready condition to the USB SIE, and enable interrupts. These
registers are implemented as registers in hardware, not block RAM. They are accessed over LMB in the
upper 16K byte address space of the core. They are the address register, control register, status register,
current USB frame number register, interrupt enable register, buffer ready register and the mode control
register.

The address register contains the function address of the USB 2.0 core. It is written by firmware and must
be set in accordance to Chapter 9 commands from the host.

The control register currently only implements a master enable bit. Until this bit is set, the SIE is held in
reset and will not respond to USB traffic.

The status register reports on current USB conditions such as USB Reset, USB Suspend, USB Resume,
USB Disconnect, setup packet received, and buffer complete status for each endpoint and each buffer.

The frame number register reports the most current USB SOF packet received. Both major 1MS frames
and minor 128 microsecond frames are reported.

The interrupt enable register determines which status register events and which endpoints cause an
interrupt to the LMB. Reading the status register clears any current interrupt.

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 5

The buffer ready register indicates the ready status of each endpoint’s two FIFO buffers to the SIE. Only
buffers that are indicated as ready will by loaded or unloaded by the SIE in response to USB transactions.

EDK Verilog Wrapper

The Verilog wrapper is used by the EDK to set the address range for the USB 2.0 core in the LMB
address map. The wrapper instaniates the core and does the master address decode for LMB bus
transactions.

Firmware Overview:
The firmware has 3 main areas of operation. First, the firmware implments all of the requiremnts of the
USB 2.0 specification chapter 9, otherwise known as the “chapter 9 firmware” that operates against
endpoint 0. Second, the firmware provides both low level primitives and high level abstraction interfaces
to the user endpoints (1 to 7). Unix style stream I/O interfaces such as USBRead, USBWrite, and
USBIoctl are provided for each of the user endpoints. Third, the firmware handles gross USB conditions
such as USB Reset, Suspend, Resume, and Disconnect.

Chapter 9 Support:
Chapter 9 of the USB specification concerns itself with the enumeration process with the USB host the
device is plugged into. This process is complex and takes a newly plugged in USB 2.0 high speed device
to the configured or enumerated state. In this state, the USB Host knows what the device implements and
how to talk to it. During normal operation, there are other endpoint 0 communications that can take place
that the Chapter 9 firmware will handle. For the most part, this is transparent to the designer. All that is
required is for the microprocessor system to ether provide an interrupt handling routine that services the
device core’s status register interrupt and dispatches to the appropriate firmware or polls the status
register on a frequent enough interval and dispatches to the appropriate firmware.

User Endpoint Firmware:
Endpoints 1 to 7 make up the user endpoints of the device core. Each endpont may be programmed to be
ether an IN or OUT endpoint (IN to the USB Host, OUT from the USB Host); may have packet sizes of
from 2 to 512 bytes each for non-ISO endpoints and from 2 to 1024 bytes each for ISO endpoints. There
is no requirement to use all of the user endpoints.

The Standard Configuration:
In it’s simplest use case, the firmware defaults to the standard configuration. The standard configuration
is designed to make it easier for a designer to add a USB interface to a design. Endpoints 1 to 3 are
setup “out of the box” as OUT endpoints (from the HOST) as non-ISO and 512 byte packet size.
Likewise, endpoints 4 to 6 are setup as IN (to the HOST) as non-ISO and 512 byte packet size. Endpoint
7 is setup as an INTERRUPT IN (to the host) endpoint with a packet size of 16 bytes and is intended to
be used for device status to the host. Using the UsbRead, UsbWrite, and UsbIoctl function calls, Unix like
stream I/O is provied to the designer over the user endpoints back to the host.

In addition, the standard configuration includes a tested Windows XP device driver that supports the
above endpoint configuration and a user level support library and demo application. With the Host set of
software plus the provided firmware, the designer can add 6 high speed USB 2.0 endpoints to his design,
plus a status endpoint and access all of them from application space under Windows XP out of the box.

USB Gross Condition Handling:

USB2.0 High-Speed Device Interface for Xilinx EDK

6 11/23/2010

Since USB is “Plug and Play” code is provided to handle the Plug and Play aspects of USB. USB
Disconnect happens when the user unplugs the USB cable. The firmware will properly shut down I/O and
return the core to the USB unenumerated state waiting for a new plugin. USB Reset happens on host
command. Similar firmware comes into play as for USB Disconnect. USB Suspend / Resume handles the
go to sleep and wakeup aspects of USB and safely suspends and resume I/O operation.

In addition using the USBIoctl high level abstraction interface, user provided call backs can be installed
the will be “called out” on any of the above conditions to handle user specific situations. Please note that
all of these callbacks are called at interrupt service time (if interrupts are being used) and should be short
and to the point.

Non Standard Configuration:
If the standard configuration will not provide the needed functionality for a designer, then the firmware
provides several options to produce non standard configurations.

Modify the Standard Configuration:
This method will work best when the desired configuation is not too different from the standard
configuration. Perhaps the number or direction of endpoints are different or the packet sizes need to be
tweaked. This approach works as follows:

1. The designer must modify the descriptors provided for the standard configuration in usb.c using the
structure definitions in usb.h. These descriptors must match the desired USB configuration.

2. Call USBInit as usual. This loads the modified descriptors into the firmware.

3. Then appropriate calls must be made to USBIoctl to set each endpoint’s characteristics to match what
was set in the modified descriptors. These calls can include setting the base address in dual port RAM for
each endpoint’s buffers and the size of those buffers.

Warning:
The designer must be careful in the assignment of endpoint base addresses and sizes since there is no
contention checking between endpoints in the dual port RAM. The core will happily DMA anywhere into
dual port RAM it is told to for an endpoint including right over other endpoint’s buffer areas.

4. Use the other USBIoctl calls to set call backs for USB Reset, Suspend, and Disconnect.

5. Continue with normal startup and operation

The calls UsbRead, UsbWrite, and other UsbIoctl calls are still available once the endpoints have been
custimized as long as the right call is made to the right endpoint – I.E. – USBRead to an OUT endpoint,
USBWrite to an IN endpoint for example.

Create Completely New Descriptors:
If the designer needs a USB configuation that is completely different from the standard configuration
supplied, then completely different USB descriptors will be needed. This approach will require a
considerably higher understanding of USB at several levels. However, using the files usb.c and usb.h it is
feasible to build something unique without writing firmware from scratch. Some things to consider:

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 7

1. Look at the layout of the descriptors at the top of usb.c and their corresponding structure
definitions in usb.h.

2. Look at the function usbinit in usb.c. Follow it’s logic flow and notice how the descriptors are
copied into data structures. These descriptors are presented to the usb host on demand through
the chapter 9 code in the firmware. The chapter 9 fucntion, GetDescriptor parses chapter 9
requests and selects the appropriate descriptor for transmission over USB. Both usbinit and
GetDescriptor may have to be modified.

3. The function Init_Usb_Interfaces will have to be modified to match the endpoint configurations in
the new descritpors.

4. The standard configuration API calls USBRead, USBWrite, and USBIoctl can still be used if
desired.

Write New Firmware:
The files usb.c and usb.h contain a great deal of code that can be reused, if new firmware is desired.
Most of the low level functions are quite useful in a customer firmware situation. Complete hadware
interface definitions are provided later in this document.

In any of the above cases, Vreelin Engineering is available on consulting basis to help with custimazation.

Whatever is done on the device (core) side, must match what is supplied with the device driver and INF
file on the PC side. Again this is a non trivial exercise. Vreelin is available to help with this on a consulting
basis.

If even more custimization is needed, see the firmware source code. Low level primitives are provided to
manipulate all endpoints as well as move date in and out of the dual port RAM. Vreelin is availabe on a
consulting basis to custimize any of this for special designer needs.

Host Software
The vast majority of hosts will be Windows PC’s. A completely functional Windows XP device driver that
supports the standard configuration is supplied in source and object form with this release. This device
driver brings all 7 user endpoints out to ring 3 application space. A support library and demo application is
provided to show how to use the device driver.

The device driver will handle the following changes in the usb core’s firmware without modification:

1. endpoint IN or OUT
2. endpont size
3. endpoint interrupt, or BULK
4. number of active endpoints (up to the max of 7)

Note that the Windows XP device driver does not currently support ISO transactions. If ISO endpoint
transactions are required or if integration with other Windows XP system components are required, then a
custom device driver will be needed. Vreelin Eng. Inc. is available on a consulting basis to develop such
device drivers.

Firmware High Level API:

USB2.0 High-Speed Device Interface for Xilinx EDK

8 11/23/2010

All of the standard configuration firmware and it’s API calls are contain in usb.c. All of the data definitions
and structures are contained in usb.h. These files are located in the ml401/hal/src tree. In addition a
simple demo firmware application usbdemo1.c is also located in ml401/hal/src.

void USBInit(usb_dev* dev, int base, int irq)

1. usb_dev* dev pointer to USB dev structure (a global in user code)
2. int base base address of USB core’s on microprocessor bus
3. int irq interrupt assigned to the core

USBInit will perform all one time core initialization including registering the core’s interrupt handler with the
supported RTOS or HAL. The usb_dev structure should be allocated in the user’s global area and must be
valid duiring interrupt processing time.

int USBWrite(end_point, NoBlock, ptr, len)

1. int end_point endpoint number 1 to 7
2. int NoBlock 1 implies do not block on space available
3. char * ptr pointer to the buffer to write from
4. int len maximum number of bytes to write
5. returns number of bytes written

This routine will write up to len bytes from the memory addressed by ptr and send it to the USB endpoint
buffer as space is available. If NoBlock = 0, then USBWrite will suspend the caller until all of the
requested data has been written. If NoBlock = 1, then only the available data will be written including 0
bytes if no buffer space is available. USBWrite will return the number of bytes written in all cases.

int USBRead(end_point, NoBlock, ptr, len)

1. int end_point endpoint number 1 to 7
2. int NoBlock 1 implies do not block on data available
3. char * ptr pointer to the buffer to read into
4. int len maximum number of bytes to read
5. returns number of bytes read

This routine will read up to len bytes from end_point. If NoBlock is set to 1, then only the number of bytes
available up to len will be read. Otherwise, USBRead will block (ether suspend the task or spinloop
depending on the environment) until the requested number of bytes in len are available. US

int USBIoctl(end_point, int request, pvoid)

 1. int end_point endpoint number 0 to 7
 2. int request IOCTL request number, defined in usb.h
 3. void *pvoid generic pointer to specific parameters

Just as in most O/S’s, USBIoctl is the catch all call. Request determines the functionality of the call.

Request applicable to the user endpoints (1 to 7):

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 9

1. I_SET_OUT_IN
Pvoid points to an unsigned int that is 0 for OUT and 1 for IN. Note that and endpoint set to OUT receives
data from the HOST and one set to IN sends data to the host.

2. I_SET_VALID
Pvoid points to an unsigned int that is 1 for VALID and 0 for non VALID. And endpoint must be set to
VALID to operate. If set to non VALID, the endpoint will ignor all I/O from the host. VALID is a maser
enable bit for the endpoint.

3. I_SET_STALL
PVOID points to an unsigned int that is 1 for STALL and 0 for non STALL. If STALL is set, then all I/O
attempts from the host for this endpoint will received a STALL response. STALL is used in USB to
indicate a need for host interaction. It is not used often. For normal operation, set the endpoint to non
STALL.

4. I_SET_ISO
PVOID points to an unsigned int that is 1 for ISO and 0 for non ISO. Isochronous endpoints have special
charactoristics. The endpoint may have a max packet size of up to 1024 as oposed to 512 for BULK.
Packets are not handshaked and are not retried.

5. I_SET_BASE
PVOID points to an unsigned int that contains the offset in 32 bit words from the beginning of dual port
RAM to the start of the first packet buffer of two for the endpoint. It is the designer’s responsibility to
layout the dual port RAM and to make I_SET_BASE and I_SET_SIZE calls that do not result in buffer
overlap or writing of packet data to undesired locations.

6. I_SET_SIZE
PVOID points to an unsigned int that contains the size of the endpoints packet buffers in bytes. Non ISO
user endpoints can be up to 512 bytes in size. ISO endpoints can be up to 1024 bytes in size. Two packet
buffers will be allocated in dual port RAM one after the other, so that if a designer uses this call with a
value of 512 for example, 1024 bytes will be reserved.

NOTE: Functions 1 to 6 require that an appropriate set of USB descriptors be supplied to the firmware
using UsbIoctl calls to endpoint 0 as described in this document below.

Requests applicable to endpoint 0 only:

1. I_STARTUSB
This call starts the core. The core may be stopped and started at any time. However, stopping the
core during USB enumeration or other host driven event times will cause unpredictable results. This
call is primarily intended to allow the designer to setup the core charactoristics with the core stopped
and then to release the core for operation.

2. I_STOPUSB
This call stops the core. Not intended for normal use.

3. I_SETUSBRESETCB
Sets a user callback to be called when a USB Reset happens. PVOID points to a structure defined in
usb.h that has a fucntion pointer and a user data pointer that will be passed to the callback when
called. The call back provided will be called at interrrupt time, so it should be short and to the point.

USB2.0 High-Speed Device Interface for Xilinx EDK

10 11/23/2010

4. I_SETUSBDISCONCB
Sets a user callback to be called when the USB cable is unplugged. PVOID points to a structure
defined in usb.h that has a fucntion pointer and a user data pointer that will be passed to the callback
when called. The call back provided will be called at interrrupt time, so it should be short and to the
point.

5. I_SETUSBSUSPENDCB
Sets a user callback to be called when the USB goes into suspend. PVOID points to a structure
defined in usb.h that has a fucntion pointer and a user data pointer that will be passed to the callback
when called. The call back provided will be called at interrrupt time, so it should be short and to the
point.

6. I_SETUSBCONFIGCB
Sets a user callback to be called when the firmware has received and accepted a configuration
request from the host. PVOID points to a structure defined in usb.h that has a fucntion pointer and a
user data pointer that will be passed to the callback when called. The current configuration number
will be passed as well. The call back provided will be called at interrrupt time, so it should be short
and to the point.

7. I_SETUSBSOFCB
Sets a user callback to be called when a USB Start of Frame token is received. Note this is the 1
millisecond master start of frame, not the 125 microsecond sub frame. PVOID points to a structure
defined in usb.h that has a fucntion pointer and a user data pointer that will be passed to the callback
when called. The current frame number will be passed as well. The call back provided will be called at
interrrupt time, so it should be short and to the point.

8. See usb.c and usb.h for the rest of the IOCTL calls.

Windows user level API
All of the files composing the Windows XP device driver, support library and demo application are
contained in device_drivers\vreelindd. The device driver files are in the sub directory driver, and the demo
application files and support library are in the subdirectory usbapp. The support library is usb.cpp and
usb.h, the demo application is usbapp.cpp. The demo application is a Windows XP console application.

DWORD USBInit(void)
Finds the usb device in Windows XP device name space and performs magical incantations to get the
device ready for individal calls to USBOpen for the endpoints. If the magic works, returns
ERROR_SUCCESS, otherwise, the call returns the error incounterd.

DWORD USBOpen(int end_point)
Opens a handle to the specified endpoint, end_point. This function call CreateFile, passing in a name
space path to the individual endpoint. Returns ERROR_SUCCESS on successful open, otherwise the
Windows XP system error code is returned.

DWORD USBClose(int end_point)
Closes the handle to the specified endpoint, end_point.

DWORD USBRead(int end_point, char *ptr, int len)
1. Int end_point endpoint to read from

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 11

2. Char *ptr buffer pointer to read into
3. Int len maximum number of bytes to read

Will read the number of bytes requested from the specified endpoint into the buffer pointed to by ptr. The
default settings will suspend the calling thread until the number of bytes read are complete. Returns on
completion or error such as the USB device being unplugged. Will return the number of bytes read or the
error code if an error occurrs.

DWORD USBWrite(int end_point, char *ptr, int len)
1. int end_point endpoint to write to
2. char *ptr buffer to write from
3. int len maximum number of bytes to write
Writes the specified number of bytes to the endpoint from the buffer pointed to by ptr. Will suspend the
caller until len bytes are written unless appropriate DeviceIoControl calls are made through USBIoctl.
Returned the number of bytes written or the system error code if an error occurrs.

DWORD USBIoctl(int end_point, DWORD request, void *inbuffer, DWORD
 inbuffersize, void *outbuffer, DWORD outbuffersize)
1. int end_point endpoint to control
2. DWORD request DeviceIoControl code
3. void *inbuffer input buffer
4. DWORD inbuffersize input buffer size
5. void *outbuffer output buffer size
6. DWORD outbuffersize output buffer size

Passed request through to the specified endpoint using DeviceIoControl. See the documentation for
DeviceIoControl. Some requests are generic to all file I/O under Windows and would apply here. Others
are device driver specific. The Windows XP device driver supplied with the core supports the following
DeviceIoControl calls:

1. IOCTL_RESET_PIPE
This call will cause all I/O operations and the data toggle bit to be reset. Not normally needed
2. IOCTL_GET_CONFIG
Will return in the outbuffer the complete configuration descriptor unless the descriptor is larger than
outbuffersize, in which case it will return outbuffersize bytes of the descriptor.
3. IOCTL_RESET_DEVICE
Performs a complete reset of the entire device resetting all endpoints. Not normally needed.

Usbhaldemo1.c and Usbapp.c
Usbhaldemo1.c implements a demo firmware application that uses the firmware high level API as
implemented in usb.c and usb.h. Usbapp.cpp similarly uses the ring 3 user API to talk to the Windows XP
device driver. The two programs “play” together and are ment as a starting point for a designer’s
application.

USB2.0 High-Speed Device Interface for Xilinx EDK

12 11/23/2010

Core Modifications
The only modification that can be done with a netlist license is the implementation of the dual port RAM.
The Verilog source code is provded in the file dual_port_ram.v.

Core I/O Signals
The USB 2.0 core is an LMB slave complaint intrface intended to be used with the Xilinx EDK. Note that
ULPI_Data is a bi-directional data bus. The EDK conventions require all bidirectional buses to be
implemented by the EDK platgen utility. Therefore, the USB 2.0 core instead uses ULPI_Data_I and
ULPI_Data_O controlled by ULPI_Dir.

Table 1: Core I/O Signals.

Signal
Signal

Direction
Description

ULPI Interface
clock Input 60MHZ ULPI clock for SIE generated by USB PHY

ULPI_Dir Input When High, the PHY is outputing to ULPI_Data, the core see this on ULPI_Data_I

ULPI_Next Input Data in or out on ULPI_Data is required to be valid on the next rising edge of clock

ULPI_Stop Output When the core is transmitting on ULPI_Data, ULP_Stop going high will signal the end of
transmision.

ULPI_Data_I[7:0] Input ULPI Input data bus – merged with ULPI_Data_O and tri-state control in the EDK to form
ULPI_Data

ULPI_Reset Output When high causes the external ULPI PHY to reset. Used to recover from PHY error
conditions

LMB Bus Interface

LMB_Clk Input LMB Bus clock

LMB_Rst Input LMB Bus Reset – resets entire core

LMB_Abus
[31:0]

Input LMB Address bus bits 31 to 15 used for decode of core’s address space

LMB_BE[3:0] Input LMB byte lane selects, each bit corresponds to one of the 4 byte lanes on the LMB data bus,
supported by the core in the block RAM address space, not in the hard register space

LMB_Data_In
[31:0]

Input LMB Data bus into the core

LMB_RNW Input R/W select line, 0 = write, 1 = read

LMB_select Input LMB bus select line, 1 = valid cycle for this core, 0 = invalid

LMB_seqAddr Input Not used

LMB_Data_Out
[31:0]

Output LMB Data bus out of the core

LMB_ErrAck Output Not used – we don’t have any errors!

LMB_Retry Output Not used – we are very timely

LMB_TImeoutSup Output Not used – see above

LMB_XferAck Output Used to acknowledge that the requested LMB bus cycle is complete

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 13

LMB Memory Map
The following is the memory layout of the USB 2.0 Core as seen from the LMB bus. The base address of
the core is set by the EDK utility platgen using data from the file system.mhs supplied in the EDK build
tree.

Microprocessor Bus Memory Map (Port B of Dual Port RAM)
Offset Description
0 to 0x80 Endpoint confuration space
0x80 to 0x87 Setup packet storage location (8 bytes)
0x88 to 0x3fff RAM for endpoint buffers Allocation is controlled by

settings in endpoint configuration space.
0x4000 to 0x7fff Hard coded register space.
0x4000 USB Address
0x4004 Control
0x4008 Status
0x400C Current USB frame number
0x4010 Interrupt Enable
0x4014 Buffer Ready
0x4018 Mode Control (for USB certfication)

Note all offsets are byte offsets.

Endpoint Configuration Space
Each endpoint has 4 32 bit locations located sequentially and arranged by endpoint number. I.E.:

Offset Desc.
0x00 Endpoint 0
0x10 Endpoint 1
0x20 Endpoint 2
0x30 Endpoint 3
0x40 Endpoint 4
0x50 Endpoint 5
0x60 Endpoint 6
0x70 Endpoint 7

For each endpoint there are four 32 bit words defining the endpoints behaviour:

Offset Desc.
0x00 Endpoint Config Status Register
0x04 Unused, but reserved
0x08 Buffer 0 count: 0 to 1024
0x0c Buffer 1 count: 0 to 1024

Endpoint Config Status Register
BIT Name SET CLEAR Comments
31 EP_VALID_BIT Endpoint

operations are
allowed

No endpoint
operations are
allowed

Master enable / disable bit
for the endpoint

USB2.0 High-Speed Device Interface for Xilinx EDK

14 11/23/2010

30 EP_STALL_BIT Endpoint is
stalled

Endpoint is not
stalled

When set, a STALL is the
only response to the host
for this endpoint

29 EP_OUT_IN_BIT Endpoint
responds to IN
transactions

Endpoint
responds to
OUT
transactions

In/Out is with respect to the
host.

28 EP_ISO_BIT ISO endpoint Non ISO
endpoint

ISO endpoints do not send
or expect Ackʼs or Nakʼs

27 EP_DATA_TOGGLE_BIT Data toggle is 1
and will expect or
send a DATA 1
packet

Data toggle is 0
and will expect
or send a DATA
0 packet

Used as weak form of
syncronization.

26 EP_BUFFER_SELECT_BIT Current buffer is
the second buffer

Current buffer is
the first buffer

Implements ping pong
buffers

25 EP_PACKET_SIZE_MS This field allows
up to 1024 byte
packets

 MSB of the packet size

15 EP_PACKET_SIZE_LS LSB of the packet size
17 EP_PACKET_SIZE_QWA Used to index RAM in 32

bit chunks
12 EP_BASE_MS MSB of the base offset in

RAM of the buffers
0 EP_BASE_LS LSB of the base offset in

RAM of the buffers

Hard Coded Registers:

USB Address Register:
Contains the Host assigned USB address of the device. Takes on vules from 0 to 127. An address of 0
implies that the device is unenumberated and is the default address of all USB devices at plug in time.
Reset by hardware to 0. Program by the microprocessor under supplied Chapter 9 firmware control.

Control Register:
Only one bit, bit 31. When clear, the USB SIE is paused and will not respond to any USB activity. When
set, the SIE operates normally.

Status Register
The status register reports status on the operation of the USB device core. It is an auto clear register.
That is, when the microprocessor reads the status register, all bits reported are cleared.

Bit Name Set Clear comments
23 USB Reset USB Reset active Normal Will remain set

for up to 3 ms
22 USB Suspend USB Suspend active Normal Will remain set

for as long as
suspend which
can be hours

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 15

21 USB Disconnect USB Cable unplugged USB Connect USB detach
detection

20 FIFO Buf Rdy EP 0 Pkt Received
19 FIFO Buf Free EP 0 Pkt Transmitted
18 Setup Packet EP 0 Setup Pkt Rcvʼed
17 SOF Packet Start of Frame Rcvʼed

Value in Start of Frame
Register

 SOFʼs happen
every 125 us in
high speed mode!

16 High Speed USB in high speed USB in full
speed

15 EP 7 2nd Buf Comp Buffer Complete Not processed
14 EP 6 2nd Buf Comp Buffer Complete Not processed
13 EP 5 2nd Buf Comp Buffer Complete Not processed
12 EP 4 2nd Buf Comp Buffer Complete Not processed
11 EP 3 2nd Buf Comp Buffer Complete Not processed
10 EP 2 2nd Buf Comp Buffer Complete Not processed
9 EP 1 2nd Buf Comp Buffer Complete Not processed
8 Not Used EP 0 has only 1

buffer and it is bir
directional

7 EP 7 1st Buf Comp Buffer Complete Not processed
6 EP 6 1st Buf Comp Buffer Complete Not processed
5 EP 5 1st Buf Comp Buffer Complete Not processed
4 EP 4 1st Buf Comp Buffer Complete Not processed
3 EP 3 1st Buf Comp Buffer Complete Not processed
2 EP 2 1st Buf Comp Buffer Complete Not processed
1 EP 1 1st Buf Comp Buffer Complete Not processed
0 EP 0 Buf Comp Buffer Complete Not processed EP 0 has only 1

buffer and it is bir
directional

USB Frame Number Register:
The frame number register is composed of 2 fields, frame and microframe. Frames are sent once every
one millisecond and denote the beginning of a USB frame. All host scheduling starts at start of frame
time. The microframe field is the result of additional start of frame tokens sent once every 125
microseconds. Because of the potentially high rate interrrupts this can generate when the Usb is in high
speed mode, interrupt enable of start of frame should be used with caution. Frame count values are 11
bits and microframes are 3 bits.

Bit Name Comments
13 Frame MSB 0 to 2047
3 Frame LSB
2 Micro Frame MSB 0 to 7
0 Micro Frame LSB

Interrupt Enable Register:

USB2.0 High-Speed Device Interface for Xilinx EDK

16 11/23/2010

The interrupt enable register allows specific bits in the status register to generate an interrupt. There is
also a master enable bit so that all interrupts can be disable at once. When the status register is read, and
there is no futher driver for the status bits causing the interrupt, the interrupt condition is cleared.
Alternatively, the interrupt enable bit can be cleared to prevent a long duration conditon such as USB
Reset from continuously generaing an interrupt.

Bit Name Comments
31 Master enable Enables setting of all other enables
23 USB Reset IE Enables USB Resets to generate an IRQ
22 USB Suspend IE Enables USB Suspends to generate an IRQ
21 USB Disconnect IE Enables USB disconnects to generae an IRQ
20 FIFO Buf Rdy IE A received Data Packet on EP 0 will generate an IRQ
19 FIFO Buf Free IE A suscessfully transmitted data packet on EP 0 will

generate an IRQ
18 SETUP Pkt IE A received setup packet will generate an IRQ
17 SOF Pkt IE Start of Frame will generate an IRQ
16 High Speed IE When the bus is in High Speed an Irq is generated
15 EP 7 2nd Buf Complete IE IRQ on Buffer operation sucessful
14 EP 6 2nd Buf Complete IE IRQ on Buffer operation sucessful
13 EP 5 2nd Buf Complete IE IRQ on Buffer operation sucessful
12 EP 4 2nd Buf Complete IE IRQ on Buffer operation sucessful
11 EP 3 2nd Buf Complete IE IRQ on Buffer operation sucessful
10 EP 2 2nd Buf Complete IE IRQ on Buffer operation sucessful
9 EP 1 2nd Buf Complete IE IRQ on Buffer operation sucessful
8 Not used
7 EP7 1st Buf Complete IRQ IRQ on Buffer operation sucessful
6 EP6 1st Buf Complete IRQ IRQ on Buffer operation sucessful
5 EP5 1st Buf Complete IRQ IRQ on Buffer operation sucessful
4 EP4 1st Buf Complete IRQ IRQ on Buffer operation sucessful
3 EP3 1st Buf Complete IRQ IRQ on Buffer operation sucessful
2 EP2 1st Buf Complete IRQ IRQ on Buffer operation sucessful
1 EP1 1st Buf Complete IRQ IRQ on Buffer operation sucessful
0 EP0 1st Buf Complete IRQ IRQ on Buffer operation sucessful

Buffer Ready Register:
Each buffer for each endpoint has a coresponding buffer ready bit in this register. The firmware sets each
bit when that buffer is ready for ether USB IN or USB OUT traffic. Until that bit is set, an attempted IN or
OUT to the buffer will result in a NAK back to the host. Note that the ability of a buffer to handle an IN or
OUT is determined by the EP_OUT_IN_BIT in the corresponding endpointʼs ep_config_status word in low
memory. Also note that endpoint 0 has only one buffer and that it handles INʼs or OUTʼs. This is per the
USB specificiaton.

Bit Name Comment
15 EP 7 2nd Buffer Ready Set when availabe for IN or OUT
14 EP 6 2nd Buffer Ready Set when availabe for IN or OUT
13 EP 5 2nd Buffer Ready Set when availabe for IN or OUT
12 EP 4 2nd Buffer Ready Set when availabe for IN or OUT

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 17

11 EP 3 2nd Buffer Ready Set when availabe for IN or OUT
10 EP 2 2nd Buffer Ready Set when availabe for IN or OUT
9 EP 1 2nd Buffer Ready Set when availabe for IN or OUT
8 N/A End point 0 has only one buffer
7 EP 7 1St Buffer Ready Set when availabe for IN or OUT
6 EP 6 1St Buffer Ready Set when availabe for IN or OUT
5 EP 5 1St Buffer Ready Set when availabe for IN or OUT
4 EP 4 1St Buffer Ready Set when availabe for IN or OUT
3 EP 3 1St Buffer Ready Set when availabe for IN or OUT
2 EP 2 1St Buffer Ready Set when availabe for IN or OUT
1 EP 1 1St Buffer Ready Set when availabe for IN or OUT
0 EP 0 Buffer Ready Set when availabe for IN or OUT

Test Mode Register:
The Usb Impelmentorʼs Forumn, the organization that controls USB logo certification, requires all USB 2.0
device that operate at high speed to support the following test modes:

1. Test Mode J: Sends a continuous Chirp J.
2. Test Mode K: Sends a continuous Chirp K.
3. Test Mode NAK: Send a NAK in response to any valid packet. Ignor invalid packets.
4. Test Mode Packet: Sends the “Luerker” packet over and over forever.

Each of these test modes are started by Chapter 9 comands via the firmware. Once received the test
mode register is set to the desired test mode. To exit the test mode requires a hardware reset. Test mode
0 is normal operation.

Verification Methods
The USB 2.0 core can be verified against any standard PC running Windows 2000 or XP using one of the
supplied reference designs and the Xilinx ML401 or ML403 development boards and the SMSC USB3300
PHY daughter card.

A complete USB 2.0 test bench environment for simulation is available from Vreelin Eng. Inc. when the
HDL source license is purchased.

How to use the USB 2.0 Core in the Xilinx EDK:

The distribution package includes the following directories:

1. pcore - This is the complete component tree for the hardware.

2. hal – This directory contains the firmare source code and an example firmware app.

3. Ml505 – This directory contains a complete EDK project for use with the Xilinx ML505
development board and the SMSC USB3300 PHY daughter card. The project is already
configured to build a demonstration system using the USB 2.0 Core, the supporting firmware, and
the Xilinx Microkernel (XMK).

USB2.0 High-Speed Device Interface for Xilinx EDK

18 11/23/2010

4. vreelindd – This directory contains both the source code and the install files for the Windows XP
device driver vreelindd.sys and demonstration application usbapp.exe. An INF file for installation
of the device driver is also included.

The easiest way to start using the USB 2.0 Core with the EDK is to use the ml505 project tree. Using
Platform Studio or manual editing of the configuration files system.mhs and system.mss, a user specific
system can be created. The other way is to copy the pcores and hal directories to a user created project
tree created manually or with base system builder and to use Platform Studio to add the core. The USB
2.0 core is called USBIF.

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 19

The Hardware I/O Port Option

The Hardware I/O port option (HWIF) provides a very high speed direct interface to the USB SIE from
user provided hardware. Any of the 7 user endpoints may be redirected to the HWIF port. In conjunction
with the Vreelin supplied Windows device driver, sustained throughput of 50 megabytes a second is
possible.

The HWIF redirects USB packet I/O from the internal core ping pong buffers to the HWIF port when bit 14
(EP_HW_IO) is set in an endpoint's configuration register by the microprocessor firmware. Packet data
from the PC (OUT's) or to the PC (IN's) can be redirected. Redirection can be changed on the fly by the
firmware. More than one endpoint can be redirected at a time. The HWIF port interface includes the
endpoint number so that use supplied hardware can differentiate endpoint traffic. When packet I/O is
redirected to the HWIF port, it is the responsibility of the user supplied hardware to buffer data
appropriately and to keep up with the interface.

HWIF Port Signals

Signal Signal
Direction

Description

clock Input 60MHZ USB PHY clock – all signals active on rising edge

reset Input Master reset

HWIF_Active Input High when packet traffice to HWIF is active

HWIF_EP_Adrs[2:0] Input The endpoint number of the current packet. Can be used by user hardware to decode
when data source or sink to use.

HWIF_Next Input High when next byte in or out is valid data bus

HWIF_Error Input High when an transmission or reception error has occurred. This indicates the current

receive packet must be discarded or the current transmit packet must be resent. Used
by user hardware to control buffering.

HWIF_Data_Out [7:0] Input 8 bit data in. Valid when HWIF_Next is high, one byte per clock

HWIF_Data_In [7:0] Output 8 bit data out. Next byte must be valid on next clock when HWIF_Next is high

HWIF_Ready Output Asserted by user hardware within 3 clocks after HWIF_Active is high to signal user
hardware ready with data. If this does not happen, the USB SIE will send a NAK in

response to the current packet. Can be used with the HWIF_EP_Adrs to selectively
indicate ready or not ready for an end point.

HWIF_Stall Output Asserted by user hardware when a STALL condition is present. Will cause the USE
SIE to send a STALL in response to any packet. Can be used with the
HWIF_EP_Adrs to selectively STALL an end point.

A demonstration hardware application is provided. The file is hwif_wrap.v. It is well commented. This file
implements a wrap application where data from USB is sinked over endpoint 1 into a ping pong memory
and sourced over endpoint 4 back to USB.

USB2.0 High-Speed Device Interface for Xilinx EDK

20 11/23/2010

Sequence to Sink Data from USB

1. Wait for HWIF_Active to go high

2. If ready to receive data, assert HWIF_Ready within 3 clocks

3. Sink one byte of data from HWIF_Data_Out on each clock that HWIF_Next is high

4. When HWIF_Active goes low, the transfer is complete. If HWIF_Error is high, then the transfer’s
CRC16 failed and the packet should be discarded. If HWIF_Error is high it will drop on the next
clock.

5. If HWIF_Error was low indicating that the packet was received successfully, the last two bytes
store are the CRC16 value and should be discarded.

Sequenece to Source Data to USB

1. Wait for HWIF_Active to go high

2. If ready to transmit data, assert HWIF_Ready within 3 clocks

3. Source one byte of data to HWIF_Data_In on each clock that HWIF_Next is high

4. When data from the current packet is finished, drop HWIF_Ready on the clock following the last
byte of transfer. Note that zero length packets are legal as are short length packets. The
maximum length packet that may be transferred will depend on the setup of the endpoint’s
descriptor by the firmware. Maximum for Bulk is 512 bytes.

5. Wait for HWIF_Active to go low. This may take several microseconds as the USB SIE is waiting
for the host to ACK, NAK, or timeout. If the host received the packet correctly, I.E., it ACK’ed the
transfer, then when HWIF_Active goes low, HWIF_Error will also be low. If an error occurs,
HWIF_Error will be high and the packet will need to be re-transmitted on the next packet
transaction against this endpoint. If HWIF_Error was high, it will go low on the next clock.

Use of HWIF_EP_Adrs

HWIF_EP_Adrs identifies the endpoint number of the current HWIF transaction. It is valid while
HWIF_Active is high. HWIF_EP_Adrs would allow user supplied hardware to support more than one
endpoint.

Use of HWIF_Stall and HWIF_Ready

HWIF_Ready normally indicates dynamic status of the user’s hardware to sink or source data.
However HWIF_Ready and HWIF_Stall can be used to indicate static not ready or Stall conditions.
As long as HWIF_Ready is low, any packet activity against the HWIF port will be NAK’ed. As long as
HWIF_Stall is high, any packet activity against the HWIF port will be STALL’ed.

Clock Implications

The HWIF port clock runs at 60MHZ and is derived from the USB PHY. It also runs the USB SIE. All
transactions and all signals of the HWIF port are synchronous to clock.

Vreelin Eng. Inc High-Speed USB2.0 Device Core for Xilinx EDK

www.vreelin.com 21

